7 research outputs found

    Modular DC/DC Converter for DC Distribution and Collection Networks

    Get PDF
    A major change in the electrical transmission and distribution system is taking place in Europe at the moment. The shift from a centralised energy production to a distributed generation profoundly changes the behaviour of the grid. Environmental or social issues associated with the construction of new power lines to relieve bottlenecks, together with aged equipment dating from the 1960s, pose some serious challenges to government, the research community and the economy. Concepts of reactive compensation, harmonic cancellation, voltage stability, power quality and bulky low-frequency transformers need to be redefined for power exchange and transmission in the future. Photovoltaics, wind turbines, fuel cells, storage systems and uninterruptible power supplies use many power electronic interface circuits, where DC intermediate levels already exist. Large photovoltaic- or wind- powered installations, which are connected to a cable network, are characterised by non-negligible distances due to their low power-by-surface density. On the side of the consumer, current trends show an increasing use of DC in end-user equipment. In such a context, the numerous advantages of power electronics and DC cables may sometimes out-weigh their higher cost. In the future, high-power semiconductor devices that allow higher switching frequencies of the converters may make it possible to down-size even more the passive components. This would significantly reduce raw material consumption and therefore cost, something that is crucial for the market to accept the technology. In the first part of this PhD thesis, the advantages of DC distribution in terms of transmission losses are illustrated with the help of three case studies. The second part and the main contribution of this thesis is the analysis of a promising candidate for a power electronic transformer, the key component of any DC based grid. It is a bidirectional isolated DC/DC converter based on modular multilevel converters, which are well suited for medium or even high voltage range. The motivation was to investigate a converter operation with important voltage elevation ratios, capable of adapting the voltage level between low, medium and high voltage. A medium-frequency isolation stage provides the possibility of downsizing the passive components. Two modulation methods, a multilevel and a two-level operation, were analysed and compared in terms of losses. The modular DC/DC converter is an attractive solution for the sensitive aspect of the short-circuit behaviour of classical DC links and power lines. The converter can also handle short circuits without the need for additional protection devices, such as circuit breakers. Given the many advantages of DC systems (reduced environmental impact, reduced space requirements, reduced raw material use, high power quality, power flow control, low transmission losses), this new technology must, at least, be considered when assessing the extension or the renovation of conventional AC grids

    Missense mutations in TENM4, a regulator of axon guidance and central myelination, cause essential tremor

    Get PDF
    Essential tremor (ET) is a common movement disorder with an estimated prevalence of 5% of the population aged over 65 years. In spite of intensive efforts, the genetic architecture of ET remains unknown. We used a combination of whole-exome sequencing and targeted resequencing in three ET families. In vitro and in vivo experiments in oligodendrocyte precursor cells and zebrafish were performed to test our findings. Whole-exome sequencing revealed a missense mutation in TENM4 segregating in an autosomal-dominant fashion in an ET family. Subsequent targeted resequencing of TENM4 led to the discovery of two novel missense mutations. Not only did these two mutations segregate with ET in two additional families, but we also observed significant over transmission of pathogenic TENM4 alleles across the three families. Consistent with a dominant mode of inheritance, in vitro analysis in oligodendrocyte precursor cells showed that mutant proteins mislocalize. Finally, expression of human mRNA harboring any of three patient mutations in zebrafish embryos induced defects in axon guidance, confirming a dominant-negative mode of action for these mutations. Our genetic and functional data, which is corroborated by the existence of a Tenm4 knockout mouse displaying an ET phenotype, implicates TENM4 in ET. Together with previous studies of TENM4 in model organisms, our studies intimate that processes regulating myelination in the central nervous system and axon guidance might be significant contributors to the genetic burden of this disorde

    Study on the Reversible DC-DC Converter as Interface between Low and Medium Voltage DC Networks

    No full text
    This paper introduces an isolated reversible DC-DC converter with a particular topology, which benefits from both the NPC (neutral point clamped) structure and the series-parallel connection of converters. The key property of the proposed topology is the output voltage elevation above the blocking capabilities of each switch, without taking to a delicate synchronization of series-connected semiconductors. The converter is composed by two identical cells, each containing a full bridge, a medium frequency transformer and an NPC converter, connected in parallel at the input and in series at the output. The operation principle of each cell, into which a trapezoidal modulation was implemented, is similar to a DAB (dual active bridge). A new model improves the dynamic performance of the controller. Simulation and experimental results verify the proposed topology, its control and start-up strategy

    Modular DC/DC Converter: Comparison of Modulation Methods

    No full text
    This paper presents a bidirectional modular DC/DC converter. It consists of two Modular Multilevel Converters (MMC) linked by a transformer to achieve galvanic isolation. This topology serves as “DC transformer” interfacing low and medium voltage DC grids. By the means of the “front-to-front” connection, the converter is able to handle short circuits without additional protection. A higher operating frequency makes it possible to decrease the size of the transformer, the capacitors and the branch inductances. Two fundamental frequency modulation methods are presented with the aim to reduce the switching frequencies without penalizing the performance of the transformer. The multilevel modulation yields a conventional staircase voltage waveform, whereas the two-level modulation, which is inspired by the conventional double active bridge converter, results in a two-level voltage waveform. A case study of a wind power converter will serve as point of comparison between the two methods. The semiconductor losses are evaluated and the efficiencies for different transformer designs are discussed

    Cross talk between autophagy and oncogenic signaling pathways and implications for cancer therapy

    No full text
    corecore